Hardy and Wright, Chapter 8 (Second Part)

Picking up where we left off last week, we finished chapter 8 today. Most of the time was spent trying to trace through the proofs of the various statements, so I won’t go into too much detail here about that. Many of the proofs had the same flavor, cleverly grouping terms in a polynomial, or setting corresponding coefficients equal in two different representations of a polynomial.

When I had first read the chapter, I didn’t pay too close attention to some of the later sections, for example the section on Leudesdorf’s Theorem (generalizing Wolstenholme’s), and the “Further consequences of Bauer’s Theorem“. However, during our meeting we worked through most of Leudesdorf’s theorem, and we were able to gain some appreciation for the various cases (specifically, why they arise).

One of the theorems in the sections we kinda glossed over was the following (Theorem 131 in the book): If p is prime, and 2v<p-3, then the numerator of S_{2v+1}=1+\frac{1}{2^{2v+1}}+\cdots+\frac{1}{(p-1)^{2v+1}} is divisible by p^2. I noted that this S_{2v+1} is a partial sum for \zeta(2v+1)=\sum_{n=1}^{\infty} n^{-(2v+1)} (Wikipedia, Mathworld). Eric wondered if perhaps they were thinking about this sum as a generalization of this \zeta function to some finite field, but the modulus of p^2 didn’t fit that entirely. Eric also reminded us that closed forms for \zeta(2v) can be found, while closed forms for \zeta(2v+1) are not known.

Advertisements

Tags: , , , ,

One Response to “Hardy and Wright, Chapter 8 (Second Part)”

  1. Hardy and Wright, Chapter 9 « ∑idiot’s Blog Says:

    […] and Wright, Chapter 9 By sumidiot Continuing on, we talked about “The Representation of Numbers by Decimals” this week. I thought the […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: